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Abstract

During each school semester, students face an onslaught of material to be learned. Students

work hard to achieve initial mastery of the material, but when they move on, the newly learned

facts, concepts, and skills degrade in memory. Although both students and educators appreciate

that review can help stabilize learning, time constraints result in a trade-off between acquiring

new knowledge and preserving old knowledge. To use time efficiently, when should review

take place? Experimental studies have shown benefits to long-term retention with spaced study,

but little practical advice is available to students and educators about the optimal spacing of

study. The dearth of advice is due to the challenge of conducting experimental studies of learn-

ing in educational settings, especially where material is introduced in blocks over the time

frame of a semester. In this study, we turn to two established models of memory—ACT-R and

MCM—to conduct simulation studies exploring the impact of study schedule on long-term

retention. Based on the premise of a fixed time each week to review, converging evidence

from the two models suggests that an optimal review schedule obtains significant benefits over

haphazard (suboptimal) review schedules. Furthermore, we identify two scheduling heuristics

that obtain near optimal review performance: (a) review the material from l-weeks back,

and (b) review material whose predicted memory strength is closest to a particular threshold.

The former has implications for classroom instruction and the latter for the design of digital

tutors.
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1. Introduction

At every level of the educational system, from grade school through college through

professional school, instructors and textbooks typically introduce students to new material

in blocks. These blocks—sometimes called sections or units—represent conceptually

coherent chunks of knowledge. For example, in a foreign language class, students may

learn conversational skills concerning foods and restaurants one week, traveling the next

week, and vacation activities the following week. In medical school, students may study

vascular, pulmonary, and renal systems in consecutive months.

At the end of each block, teachers typically administer a quiz or assign a problem set

to encourage students to master the material in the block. Because the students are

rewarded for focusing on this task, they have little incentive at that moment to rehearse

and practice material they have learned previously. As a result, forgetting is inevitable.

Although anyone who has taught a class appreciates the need for review, the time

demands of review of old material must be balanced against the need to introduce new

material, explain concepts, and encourage students toward initial mastery.

Achieving this balance requires an understanding of when students will most benefit

from review. Reviewing material when it is fresh provides minimal benefit; however,

waiting until material has been forgotten is also costly because the benefit of earlier study

has been lost. A long history of research in experimental psychology has shown that the

temporal distribution or spacing of study has a substantive impact on long-term retention.

Selecting the ideal spacing of study can lead to nearly doubling retention of material on

an educationally relevant time scale of a year (Cepeda, Vul, Rohrer, Wixted, & Pashler,

2008). Evidence for the benefit of spaced study is found not only in the domain of declar-

ative learning but in conceptual understanding and cognitive skill acquisition (Carpenter,

Cepeda, Rohrer, Kang, & Pashler, 2012), and spacing manipulations have been shown to

be effective in the classroom (e.g., Sobel, Cepeda, & Kapler, 2011).

The goal of this study was to leverage computer simulations to offer educators practi-

cal guidance about the optimal spacing of review in the context of a semester- or quarter-

long class. In such a context, we assume that the class is divided into blocks, new mate-

rial is introduced in each block, and sometime during each block is allotted for review of

old material. The issue at hand is what material should be reviewed and when. To state

the issue formally, suppose that a semester consists of B blocks, and in block b, b ∊ 1…
B, the opportunity exists to review material from N previous blocks, denoted Rb,n, 1 ≤ Rb,

n < b and n ∊ 1…N. What review schedule, R ≡ {Rb,n}, will maximize the students’

memory for material following some retention interval, RI, expressed in weeks after the

end of the semester?

Conducting controlled experimental studies to answer this question is not feasible. Even

if the opportunity is afforded for the review of only one (N = 1) block, the number of

review schedules is 1� 2� . . .� ðB� 1Þ ¼ ðB� 1Þ!, and the combinatorics get worse for

larger N. A typical high school semester or a typical college quarter may have

B = 10 weeks of new material, for which 9! ¼ 362; 880 possible review schedules exist.

Although the number of candidate schedules could be greatly pruned, it would be a
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significant undertaking to conduct an experimental study comparing even two alternative

schedules over a time window spanning ten study blocks and a subsequent final

evaluation.

Because of the difficulty in conducting multisession studies over extended time peri-

ods, nearly all prior research on spacing has either focused on the case of two study ses-

sions or spanned such a compressed time scale that its educational relevance is

questionable (Kang, Lindsey, Mozer, & Pashler, unpublished data offer a contrasting

example). Without recourse to controlled laboratory studies, one might conclude that cog-

nitive science has little to offer educators beyond the qualitative advice to review material

occasionally.

However, a trustworthy computational model can be used to optimize study, that is, to

search for the study schedule that will maximize student retention at some specified point

or time window in the future. The cost of predicting performance with a computational

model under a given study schedule is negligible relative to the cost of conducting a

behavioral experiment. In past work, we have shown the potential benefits of optimizing

study via a cognitive model (Lindsey, Mozer, Cepeda, & Pashler, 2009). In the present

work, we use models to explore a range of scheduling algorithms to identify both optimal

schedulers and heuristic schedulers that well approximate the optimum in an extended

classroom setting.

2. Spaced study and memory models

The spacing effect has been investigated for over a hundred years (Ebbinghaus, 1885/

1964), and in additional to qualitative theories, many mathematical and computational

models have been proposed to explain the phenomenon (e.g., Benjamin & Tullis, 2010;

Raaijmakers, 2003). However, two recent efforts have been fairly comprehensive in

obtaining quantitative fits to data and both have shown promise in predicting the outcome

of experimental studies: an extension of the ACT-R model of memory (Pavlik & Ander-

son, 2005, 2008), and a model we developed called the Multiscale Context Model or

MCM (Mozer, Pashler, Cepeda, Lindsey, & Vul, 2009). We summarize the two models

and then turn to using the models as a proxy for human performance to predict the opti-

mal spacing of study. Lindsey et al. (2009) compared qualitative predictions of ACT-R

and MCM in a hypothetical situation, and the models gave some contrasting results.

However, these earlier simulation studies did not explore the predictions of the models in

a practical educationally relevant setting.

2.1. ACT-R

ACT-R (Anderson et al., 2004) is an influential cognitive architecture whose declara-

tive memory module is often used to account for explicit recall following study. ACT-R

assumes that a separate trace is laid down each time an item is studied, and the trace

decays according to a power law, t�d, where t is the age of the memory and d is the
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power law decay for that trace. Following n study episodes, the activation for an item,

mn, combines the trace strengths of individual study episodes:

mn ¼ ln
Xn
k¼1

bkt
�dk
k

 !
þ b;

where tk and dk refer to the age and decay associated with trace k, and b is a student- and/

or item-specific parameter that influences memory strength. The variable bk reflects the

salience of the kth study session (Pavlik, 2007): Larger values of bk correspond to cases

where, for example, the participant self-tested and therefore exerted more effort.

To explain spacing effects, Pavlik and Anderson (2005, 2008) made an additional

assumption: The decay for the trace formed on study trial k depends on the item’s activa-

tion at the point when study occurs:

dkðmk�1Þ ¼ cemk�1 þ a;

where c and a are constants. If study trial k occurs shortly after the previous trial, the item’s

activation, mk-1, is large, which will cause trace k to decay rapidly. Increasing spacing there-

fore benefits memory by slowing decay of trace k. However, this benefit is traded off against
a cost incurred due to the aging of traces 1. . .k � 1 that causes them to decay further.

The probability of recall is monotonically related to activation:

pðmÞ ¼ 1=ð1þ e
s�m
s Þ;

where s and s are additional parameters. In total, the variant of the model described here

has six free parameters.

Pavlik and Anderson (2008) use ACT-R activation predictions in a heuristic algorithm

for within-session scheduling of trial order and trial type (i.e., whether an item is merely

studied, or whether it is first tested and then studied). They assume a fixed spacing

between initial study and subsequent review. Thus, their algorithm reduces to determining

how to best allocate a finite amount of time within a session. Although they show an

effect of the algorithm used for within-session scheduling, we focus on the complemen-

tary issue of between-session scheduling. The between-session manipulation has a far

greater impact on long-term retention (Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006).

2.2. MCM

ACT-R is posited on the assumption that memory decay follows a power function. We

developed an alternative model, the Multiscale Context Model or MCM (Mozer et al.,

2009), which provides a mechanistic basis for the power function. Adopting key ideas from

previous models of the spacing effect (Kording, Tenenbaum, & Shadmehr, 2007; Raaij-

makers, 2003; Staddon, Chelaru, & Higa, 2002), MCM proposes that each time an item is
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studied, it is stored in multiple item-specific memory traces that decay at different rates.

Although each trace has an exponential decay, the sum of the traces decays approximately

as a power function of time. Specifically, trace i, denoted xi, decays over time according to:

xiðt þ DtÞ ¼ xiðtÞ expð�Dt=siÞ;

where si is the decay time constant, ordered such that successive traces have slower

decays, that is, si < si+1. Traces 1 – k are combined to form a net trace strength, sk, via a

weighted average:

sk ¼ 1

Ck

Xk
i¼1

cixi; where Ck ¼
Xk
i¼1

ci

and ci is a factor representing the contribution of trace i. In a cascade of K traces, recall

probability is simply the thresholded strength: P(recall) = min (1, sK).
Spacing effects arise from the trace update rule, which is based on Staddon et al.

(2002). A trace is updated only to the degree that it and faster decaying traces fail to

encode the item at the time of study. This rule has the effect of storing information on a

time scale that is appropriate given its frequency of occurrence in the environment. For-

mally, when an item is studied, the increment to trace i is negatively correlated with the

net strength of the first i traces, that is,

Dxi ¼ eð1� siÞ;

where ɛ is a step size. We adopt the retrieval-dependent update assumption of Raaijmak-

ers (2003): ɛ = 1 for an item that is not recalled at the time of study, and ɛ = ɛr(ɛr > 1)

for an item that is recalled.

The model has five free parameters (ɛr, and four parameters that determine the contribu-

tions {ci} and the time constants {si}). MCM was designed such that all of its parameters,

with the exception of ɛr, could be fully constrained by data that are easy to collect—the func-

tion characterizing forgetting following a single study session—which then allows the model

to make predictions for data that are difficult to collect—the function characterizing forget-

ting following a study schedule consisting of two or more study sessions. MCM has been

used to obtain parameter-free predictions for a variety of results in the spacing literature.

3. Methodology

3.1. Model parameterization

Different parameterizations of ACT-R and MCM are critical to accounting for a range

of learning scenarios—scenarios that characterize the ability and background knowledge
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of students, the difficulty of material, the manner of study, and the degree to which previ-

ously learned material interferes with or facilitates the learning of new material. Because

our goal is to obtain results that have some generality across scenarios, we simulate a

wide range of scenarios and base our results on the average over scenarios.

We summarize the many factors that comprise a scenario in terms of a forgetting
curve, which specifies the probability that material learned in a single study session will

be available at some later point in time. Fig. 1 shows a family of 105 forgetting curves,

all of which decay according to a power function of time. We generated this family by

finding power functions of the form

pðtÞ ¼ ð1þ c1tÞ�c2

where p(t) is the recall probability at time t, expressed in days, and c1 and c2 are positive

real-valued parameters. The parameters were fit to obtain specified recall probabilities on

days 2 and 30, p(2) and p(30). To achieve a range of forgetting curves, we chose p
(2) ∊ {0.01, 0.12, 0.23, 0.34, 0.45, 0.55, 0.66, 0.77, 0.88, 0.99}; given p(2), we chose p
(30) = gp(2), where g is a set of (20p[2]) uniformly spaced values in :01

�
pð2Þ�1; 0:99

�
.

These criteria yield a family of 105 forgetting curves that express a diverse range of natu-

rally occurring degrees of forgetting.1

For MCM, we search for model parameters that well approximate each forgetting

curve. MCM has five free parameters, one of which (ɛr) was set based on previous simu-

lations, and the other four of which directly determine and are fully constrained by the

shape of the forgetting curve. For ACT-R, we fixed bk = 1, but because its remaining free

parameters are not fully constrained by the forgetting curve, we used the parameterized

MCM to generate data which were then used to fit ACT-R parameters, ensuring that

matched parameter sets had a loose correspondence. The generated data consisted of two

Fig. 1. A sample of the 105 power-function forgetting curves used to represent a diversity of learning scenarios

(i.e., learning tasks varying in material difficulty, student ability, manner of study, and potential interference).
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study sessions with intersession intervals ranging from minutes to weeks and a subsequent

final test days to months later. This procedure yielded 105 matched instantiations of

MCM and ACT-R, reflecting a wide range of scenarios.

3.2. Simulated learning experiment

We conducted separate simulations of MCM and ACT-R to model the performance of a

student learning new material in each of B = 10 weekly blocks. We assumed homogeneity

of material in a block, allowing the block’s material to be distilled into a single item for

the purpose of the simulation. Initial study was simulated as a single training trial to the

model, although this training trial—and the corresponding memory trace—is intended to

correspond to the net effect of concentrated study over multiple trials by a student learner.

Review was included in the curriculum starting after a D-week delay. Review consists

of selecting one previous block’s material and presenting it as a training trial to the model.

We simulated the ðB� 1Þ!=ðD� 1Þ! distinct review schedules. We allowed D to vary

because when review begins earlier in the semester, the number of sensible review sched-

ules significantly shrinks. For example, with D = 1, the only option for week 2 review is

week 1; this selection has consequences the next week because in week 3, review of

week 1 again adds little benefit, so a sensible option is to review week 2; and so forth.

To evaluate the effectiveness of a given review schedule, mean recall accuracy over

the B blocks was assessed by testing the model following a retention interval of RI weeks
past the end of the semester.

3.3. Alternative review schedulers

To summarize, we consider two models of human learning (ACT-R and MCM), 105

scenarios (model parameterizations), three retention intervals (RI = 1, 4, 26 weeks), and

three review delays (D = 1, 2, 3 weeks), for a total of 1,890 distinct combinations. For

each combination, we conducted an exhaustive search through the set of distinct review

schedules to determine the optimal schedule—the schedule that yields the highest average

accuracy on the final test according to the model.

In addition, we considered various heuristic schedulers. Our goal was to identify heu-

ristics that produce a close-to-optimal schedule. The two best heuristic schedulers were as

follows. A l-back scheduler follows a simple rule: in week i, review material from week

max (1, i – l). A h-threshold scheduler is motivated by Bjork’s (1994) notion of desir-
able difficulty—that material should be restudied as it is on the verge of being forgotten.

Using a memory model to determine the strength of each week’s material, this scheduler

selects the material whose recall probability is closest to h. Because we use the same

model for scheduling as we use for modeling the student, this scheduler offers a best-case

use of the h-threshold. (We also explored several variants of the threshold scheduler

which yielded poorer performance. One variant uses a scaled threshold rule whereby the

threshold value is relative to the range of performance over all weeks’ material. Another
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uses an asymmetric threshold where the selection is for material whose recall probability

is close to the threshold on one side—either above or below.)

4. Results

Fig. 2 provides an intuition about the operation of our model-based scheduling. The left

panel of the figure shows 10 curves, each representing the memory strength predicted by

MCM for one block of material as a function of weeks into the semester. The distinct rain-

bow colors indicate blocks 1–10. In this example, block i is introduced in week i and is

then reviewed in week i + 1. As a result, the block gets a bump in strength in weeks i and
i + 1, and then decays from that point on. The curves in the figure represent the average

over the 105 learning scenarios, and the ordinate of the graph shows the expected recall

probability over these scenarios. The absolute probability is immaterial and is a conse-

quence of the specific scenarios we simulate. However, relative probabilities matter. To

emphasize this point, the middle panel of the figure shows an activation trace for an arbi-

trary and somewhat bad review schedule. The right panel shows the same time history of

activation, but it is averaged over the individual blocks to obtain a prediction of cumula-

tive-exam performance (weighting all blocks equally) at a given time. The superiority of

the one-back schedule (left panel) over the arbitrary schedule (middle panel) is reflected in

a higher average recall probability. Four weeks following the end of the 10-week semester,

the better review schedule achieves an 89.7% improvement in retention over no review,

and a 16.1% improvement in retention over the poorer quality review schedule.

4.1. Exhaustive search of alternative schedules

To illustrate the space of alternative schedules, consider a simulation with MCM and

1-week review delay (D = 1). Fig. 3 shows a set of curves that reflect the expected per-

formance of all possible review schedules sorted from worst to best. The average is taken

over learning scenarios. The graph shows three simulations, one per retention interval

Fig. 2. (Left, middle panels) Activation trace from MCM for 10 blocks of material for good and poor review

schedules. (Right panel) Predicted performance on cumulative exam as a function of week in semester for

alternative review schedules.
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(RI = 1, 4, 26 weeks). The colored squares on the left indicate the performance of a “no

review” condition for the retention interval of the corresponding color. Not surprisingly,

all review schedules are superior to no review, and well-timed review is as much as 40%

better than poorly timed review.

Fig. 4 summarizes the performance of the heuristic scheduling policies. The top and

bottom rows are results from simulations of MCM and ACT-R, respectively. The three

columns are results from simulations, in which review begins following weeks 1, 2, and

3 (D = 1, 2, 3). Each bar graph shows results for retention intervals of 1, 4, and

26 weeks. From left to right, each set of bars depicts the performance of the threshold,

1-back, 2-back, 3-back, and worst review schedules relative to the optimum schedule

discovered by exhaustive search. Each bar is based on the expected performance of a

schedule over all learning scenarios. This expected performance is then divided by the

expected performance of the best possible schedule. Thus, a relative performance score of

1.0 corresponds to the best possible schedule, and a relative performance score of 0.0 cor-

responds to 0% correct on the final test.

Across all 18 simulations (2 models 9 3 delays 9 3 RIs), the threshold scheduler per-

forms almost as well as the best schedule. The l-back heuristic schedules all perform well—
within 15% of the optimal—although MCM and ACT-R make slightly different predictions.

MCM predicts that smaller l are better, whereas ACT-R predicts that larger l are better.

The two models agree in suggesting that the 2-back schedule is nearly as good as the best.

4.2. h-Threshold heuristic scheduler

The bars for the h-threshold scheduler in Fig. 4 are based on the best setting of h.
MCM and ACT-R are consistent in predicting that the h-threshold scheduler is nearly as

Fig. 3. Recall probability curves generated by MCM with a 1-week delay before beginning review (D = 1).

Each curve depicts the performance of all possible review schedules, sorted along the abscissa in order from

worst to best. A curve is generated for each retention interval (RI). Colored squares on the left edge of each

graph indicate the performance of a “no review” schedule.
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good as the best schedule found by exhaustive search. Fig. 5a shows how the predicted

performance varies as a function of h for the two models, for a delay of D = 1 week and

a retention interval of RI = 1 week. The ordinate indicates the relative performance to

the best possible schedule. Notably, the two models yield very similar curves, and

although the h-threshold scheduler does not produce the very best schedule, it comes rea-

sonably close. Notably, both MCM and ACT-R are consistent in indicating that a thresh-

old in the neighborhood of h = .4 is best. We have shown the curve for D = 1 and

RI = 1, but curves for the other values of D and RI are quite similar, and all have the

same optimum for h.
The limitation of a threshold scheduler is that it requires an accurate model to predict

memory strength as a function of time given the study history. In our simulation, we have

assumed that the model we use for determining memory strength—either MCM or ACT-

R—is a veridical model of our (simulated) student. An important question for future

research concerns how the accuracy of the model used for scheduling affects the perfor-

mance of the h-threshold scheduler. However, it is clear that whatever model is used

must take into account the history and spacing of past study because the effect of distrib-

uted practice—as embodied in both MCM and ACT-R—is central to the difference in

performance across review schedules.

Fig. 4. Expected relative performance of the heuristic h-threshold l-back schedulers. Results are shown for

MCM (top row) and ACT-R (bottom row), and for 1–3 weeks delay before the first review session (left, mid-

dle, and right columns, respectively), and for retention intervals of 1, 4, and 26 weeks (the first, second, and

third groups of bars within each graph, respectively). Each bar represents the average performance of a

scheduler over the 105 learning scenarios relative to the average performance of the best schedule, yielding a

relative performance ratio that ranges from 0 to 1. Results for the h-threshold scheduler are shown for the

optimal value of h (see text for details). The worst possible review schedule is included as a reference point.
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4.3. l-Back heuristic scheduler

Fig. 4 also depicts the performance of the 1-, 2-, and 3-back schedules, all of which

do reasonably well across models, delays, and retention intervals. However, because

ACT-R predicts the 1-back schedule to be inferior for D = 2, 3, and because MCM pre-

dicts the 3-back schedule to be inferior for D = 1, 2, we suggest that the l = 2, or the 2-

back schedule, might be adopted as a robust solution across conditions.

All results we have presented to this point are the average over the 105 learning scenar-

ios. It is possible that the l-back schedules work well on average but not for specific scenar-

ios. To examine the performance of the 2-back schedule across scenarios, Fig. 3b shows the

performance in each scenario, sorted from best to worst. The curves for MCM and ACT-R

are remarkably similar, and indicate that the 2-back schedule performs well for the majority

(60–80%) of scenarios we considered, further supporting our claim of its robustness.

5. Discussion

In a meta-analysis of the spacing literature (Cepeda et al., 2006), it was noted that the

optimal spacing of study grows monotonically with the retention interval. Although we have

shown in past work that MCM and ACT-R both predict the outcome of this meta-analysis,

neither model strongly predicts that the best l in the l-back scheduler should increase with

the retention interval (Fig. 4). Most likely, this inconsistency is due to the fact that as l
increases, the initial l + 1 weeks of study become focused on the first week’s material, and

there are diminishing returns of this focus. Consequently, the benefits of increased spacing

must be outweighed by the cost of ill-spent review time. This result suggests to us the

importance of moving beyond laboratory studies of spacing—typically with two study

sessions and a single block of material to be learned—to situations more reflective of

real-world educational constraints, that is, semesters in which multiple blocks of material

are presented staggered in time and initial study must be interlaced with review.

(a) (b)

Fig. 5. (a) Relative performance predicted by MCM and ACT-R for the h-threshold heuristic as a function of

h (for D = 1, RI = 1). (b) Relative performance of the 2-back schedule over all learning scenarios, sorted

from best to worst (for D = 1, RI = 1). In both graphs, performance is relative to the optimum schedule dis-

covered by exhaustive search.
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As promised in our study title, our results provide practical guidance to educators:

To preserve learning beyond the end of a semester, a 2-back review schedule should

generally be appropriate. This simple heuristic is easy for a teacher to implement.

Although the h-threshold scheduler performs even better, it produces schedules that

are customized to the material being learned. Exploiting this scheduler requires mathe-

matical models of human memory fit to the data of a population of students and material.

Thus, the h-threshold scheduler falls short of being a practical heuristic for teachers to

exploit.

Nonetheless, the h-threshold scheduler has great potential. Its near optimality is consis-

tent with Bjork’s (1994) notion that material should be restudied just prior to it being for-

gotten—the point of desirable difficulty. A h-threshold scheduler has previously been

claimed as optimal with h = 0 (Pavlik & Anderson, 2008), although no mathematical

proof of this claim was provided. The results of our simulations offer support for the

claim, at least for certain settings of h. The h-threshold scheduler can be of practical use

when incorporated into digital tutors used in synchronization with classroom instruction

(Lindsey, Shroyer, Pashler, & Mozer, in press). Indeed, such an approach opens the

possibility to personalized review appropriate for a specific student rather than a

one-size-fits-all approach. Our caveat in suggesting this approach is that it requires accu-

rate psychological models of memory. Models based on intuition—as embodied in some

existing web-based flashcard apps—are unlikely to prove adequate.
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Note

1. The rules for constructing these curves were hand crafted to obtain visually sensi-

ble curves. To verify that our particular choice of curves had no impact on the

results, we replicated all simulations presented in this study based on a set of 100

forgetting curves selected by different criteria. The results of this replication were

almost identical to those presented below, giving us confidence that our conclusions

are robust to the particular choice of forgetting curves.
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